

Biomarkers in Heart Failure

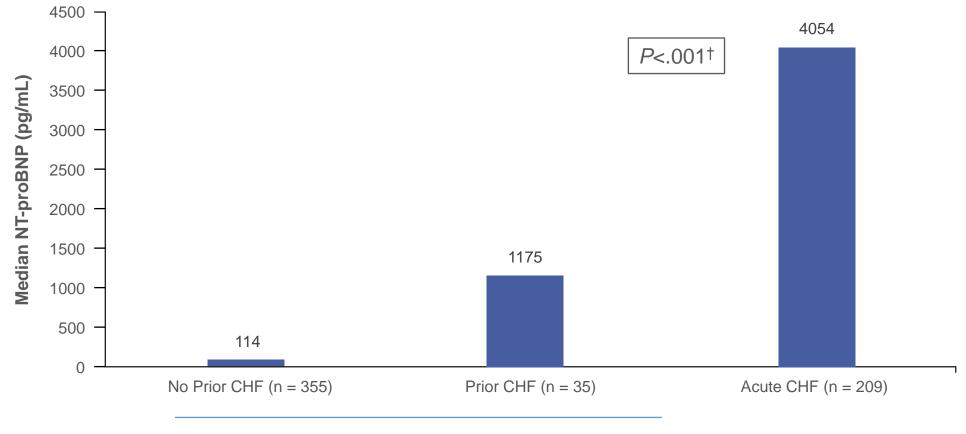
James L. Januzzi Jr MD FACC FESC Hutter Family Professor of Medicine, Harvard Medical School Cardiology Division, Massachusetts General Hospital Clinical Trials, Baim Institute for Clinical Research Trustee, American College of Cardiology

- Grant support from Novartis Pharmaceuticals, Applied Therapeutics, and Innolife
- Consulting income from Abbott Diagnostics, Janssen, Novartis, Quidel and Roche Diagnostics
- Clinical endpoint committees/data safety monitoring boards for Abbott, AbbVie, Amgen, CVRx, Janssen, MyoKardia, and Takeda
- Trustee, American College of Cardiology

HF Clinical Practice Guidelines

Indication	Class	LOE
NPs for diagnosis ¹⁻³	I	А
NPs for prognosis ¹⁻³	I	А
NPs for predischarge risk assessment ¹⁻³	lla	B-NR
NPs to prevent HF onset ¹⁻³	lla	B-R
NPs to guide HF therapy ⁴	lla	В

LOE, level of evidence.


HF Clinical Practice Guidelines

Indication	Class	LOE
NPs for diagnosis ¹⁻³	I	А
NPs for prognosis ¹⁻³	1	А
NPs for predischarge risk assessment ¹⁻³	lla	B-NR
NPs to prevent HF onset ¹⁻³	lla	B-R
NPs to guide HF therapy ⁴	lla	В

LOE, level of evidence.

NT-proBNP Levels Were Elevated in Patients With Acute HF in the PRIDE Study*

Not Acute CHF (n = 390)

CHF, congestive heart failure; PRIDE, N-Terminal Pro-BNP Investigation of Dyspnea in the Emergency Department. *Patients (N = 599) were consenting adults \geq 21 years of age presenting to the emergency department of the Massachusetts General Hospital with conductive dyspnea. [†]*P* value represents the comparison of acute CHF with patients with not-acute CHF. Januzzi JL Jr et al. *Am J Cardiol*, 2005;95:948-954.

MASSACHUSETTS Inconnection HEART CENTER

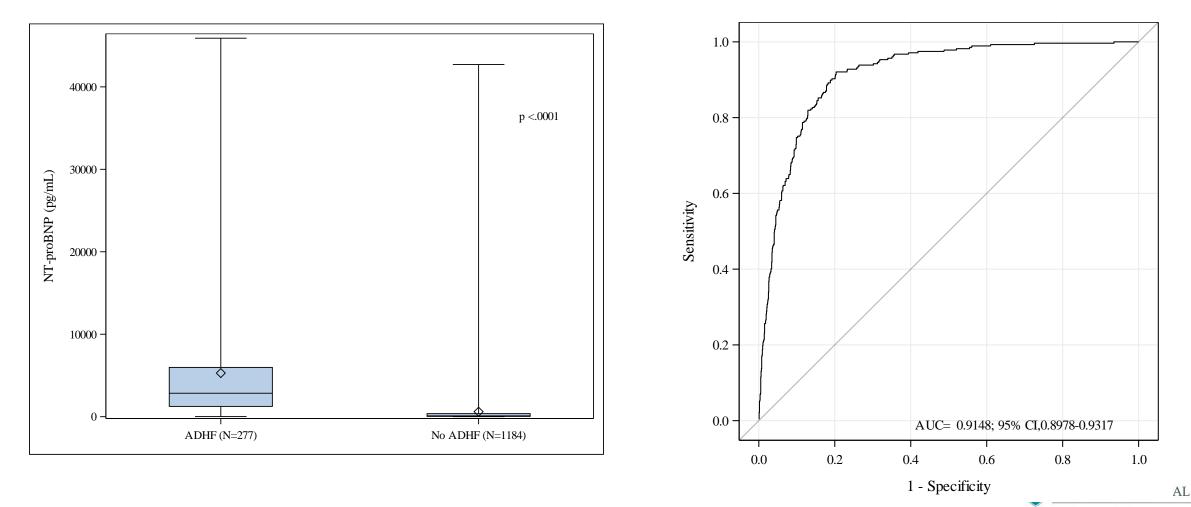
Was another trial necessary?

- In the decade since ICON, the NT-proBNP age-stratified approach has been adopted world wide for use.
- The age-stratified approach is in (most) clinical practice guidelines for HF.
- However, much has changed since the original ICON study, which made re-consideration of NT-proBNP cut-offs worthwhile.

Changes in HF demographics since early 2000's

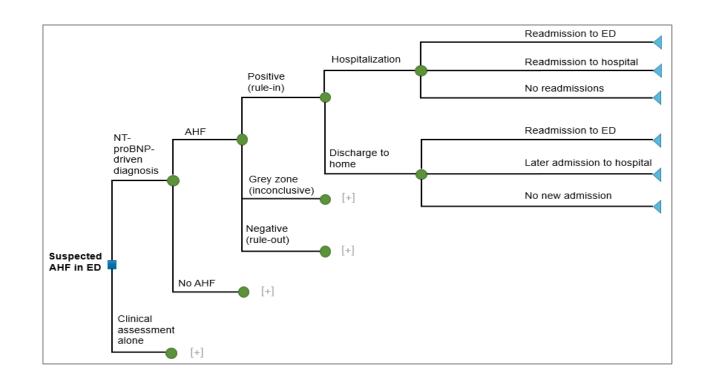
Changes	Possible effects on NT-proBNP cut offs
Patients are older	Higher optimal threshold?
More AF	Higher optimal threshold?
More CKD	Higher optimal threshold?
More HFpEF	Lower optimal threshold?
Patients are heavier	Lower optimal threshold?
Clinicians are treating to lower NT-proBNP	Lower optimal threshold?
Changes in HF therapies (neprilysin inhibition)	Lower optimal threshold?

A new trial was needed to validate NT-proBNP cut-offs in the ED setting


 A multi-center, international trial, sponsored by Roche Diagnostics and performed by the Baim Institute for Clinical Research (Boston, MA)

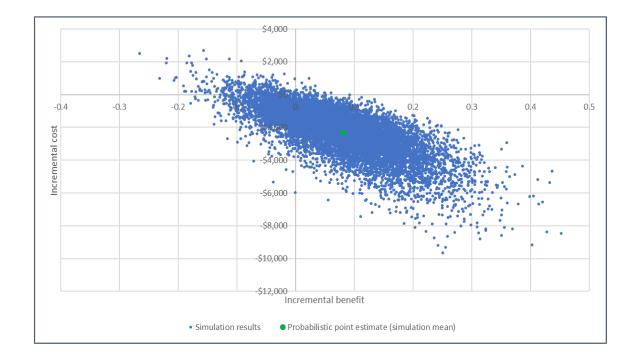
Gaggin, et al, Am Heart J, 2017; 192:26-37; Januzzi, et al, J Am Coll Cardiol, 2018;71(11):1191-1200

ICON-RELOADED Results: NT-proBNP

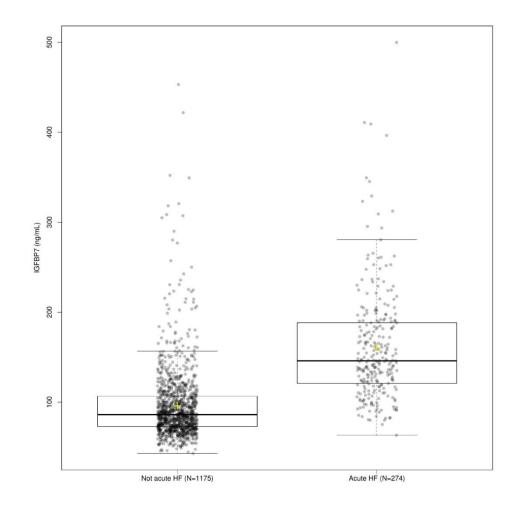


Januzzi, et al, J Am Coll Cardiol, 2018;71(11):1191-1200

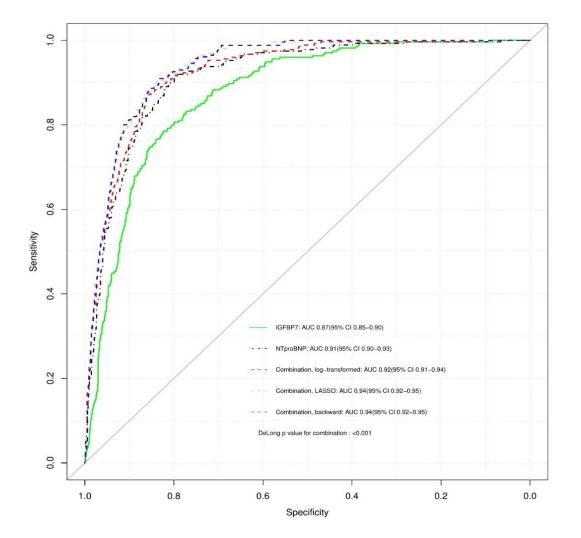
HEART CENTER



- 14% fewer initial hospitalizations
- 15% fewer admissions to cardiology or ICU
- 30% reduction in echocardiograms
- 26% fewer ED or hospital readmissions



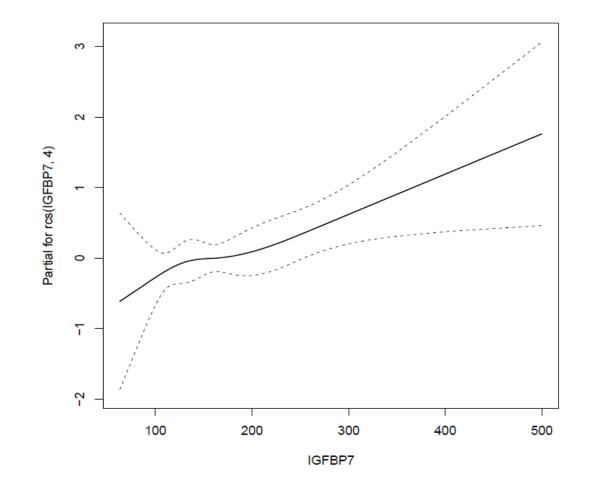
- Use of NT-proBNP decreased the average inpatient management costs by a relative 10.4% (\$20,247 vs. \$22,584) and reduced the total length of stay in ED and hospital, yielding cost savings of \$2,337/pt
- NT-proBNP reduced SAEs by 5.9% compared to clinical assessment alone


Concentrations of IGFBP7—a biomarker of tissue aging and senescence were highly associated with adjudicated diagnosis of acute HF...

Ibrahim, et al; JACC HF, 2020

ROC Analysis and NRI for acute HF

The AUC_{HF} for IGFBP7 was 0.87 The AUC_{HF} for NT-proBNP was 0.91


The two were additive with a combined AUC_{HF} of 0.94...due entirely to IGFBP7 up-classifying false – NT-proBNP results

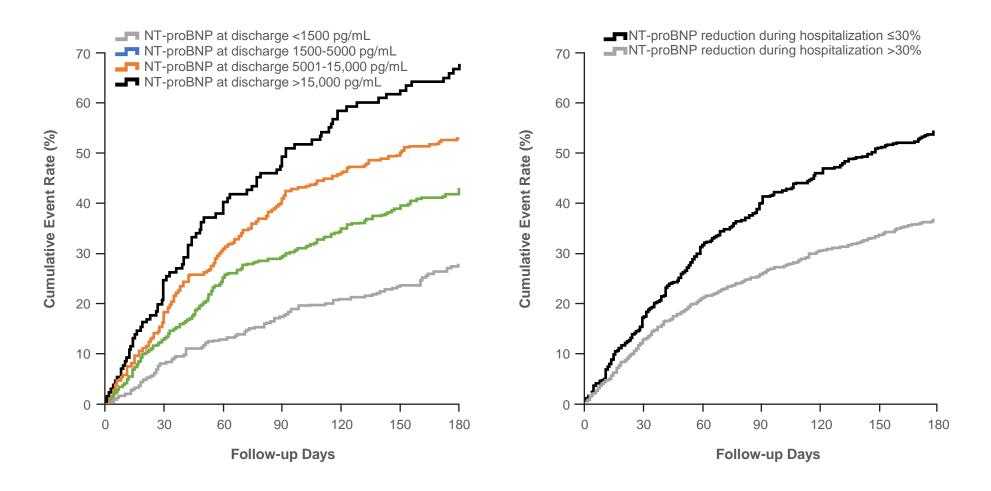
	NRI
NRI	0.25
NRI events	0.28
NRI non-events	-0.04
	MASSACHUSETTS GENERAL HOSPITAI
	HEART CENTER

Ibrahim, et al; JACC HF, 2020

Outcomes in acute dyspnea: Death/repeat hospitalization

Predictors	Hazard ratio	P-value
log ₂ -IGFBP7	1.86	0.001
log ₂ -NT-proBNP	1.34	<0.001
log ₂ -hs-cTnT	1.12	0.19
log ₂ -creatinine	0.82	0.21
Male sex	1.13 (0.82-1.57)	0.49
Age	0.99 (0.98-1.01)	0.24

Ibrahim, et al; JACC HF, 2020


HF Clinical Practice Guidelines

Indication	Class	LOE
NPs for diagnosis ¹⁻³	- I	А
NPs for prognosis ¹⁻³	- I	А
NPs for predischarge risk assessment ¹⁻³	lla	B-NR
NPs to prevent HF onset ¹⁻³	lla	B-R
NPs to guide HF therapy ⁴	lla	В

LOE, level of evidence.

Discharge NT-proBNP Values and Change in NT-proBNP Levels During Hospitalization Predict CV Event Rates

Meta-ananlysis of patients (N = 1301) hospitalized for acute decompensated heart failure from 7 prospective cohort studies. Permission requested from Heart for figure use. Salah K et al. *Heart.* 2014;100:115-125.

Operationalizing NT-proBNP Monitoring to Enhance Clinical Decision Making in ADHF

- Two measurements:
 - <u>At presentation</u> for diagnosis, triage, and prognostication
 - <u>At the end of hospitalization</u> to evaluate for treatment response and provide hospital to home link

 $\checkmark 30\%$ drop is desirable, and lower is always better

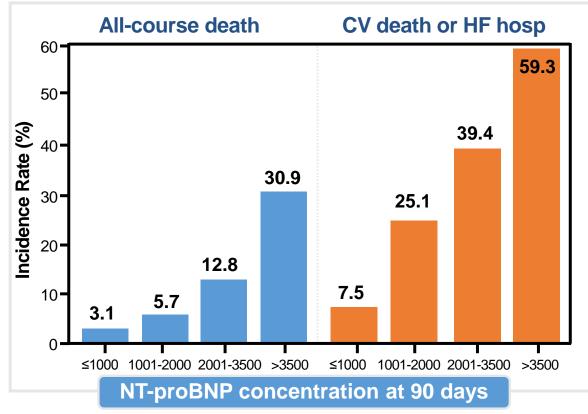
- ✓ If baseline levels are not available, discharge NT-proBNP <4000 pg/mL is desirable</p>
- ✓Non-falling or rising values identify a patient at imminent risk for rehospitalization and/or death

HF Clinical Practice Guidelines

Indication	Class	LOE
NPs for diagnosis ¹⁻³	- I	А
NPs for prognosis ¹⁻³	I	А
NPs for predischarge risk assessment ¹⁻³	lla	B-NR
NPs to prevent HF onset ¹⁻³	lla	B-R
NPs to guide HF therapy ⁴	lla	В

LOE, level of evidence.

Judging longitudinal risk in chronic HF



- Physical findings
- Signs/symptoms
- Quality of life scores (e.g. KCCQ)
- Filling pressures (e.g. CardioMems)
- Biometric data (e.g. activity, HR patterns)
- Imaging
- Biomarkers

Outcomes and achieved NT-proBNP

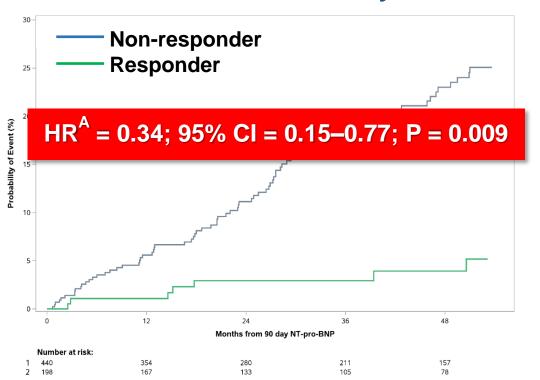
Number of events per 100 patientyears of follow-up

Log2 of NT-proBNP at 90 days and clinical outcomes

	Adjusted		
Outcome	HR (95% CI)	P-value	
All Cause Death ^A	0.58 (0.50–0.68)	<.001	
HF Hosp/CV Death ^B	0.65 (0.57–0.73)	<.001	

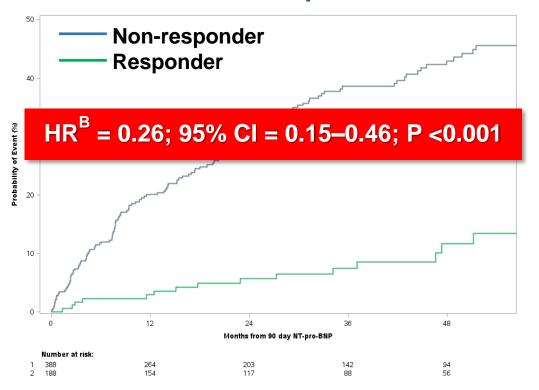
HR is with respect to halving of NT-proBNP

^AAdjusted for history of ischemic heart disease, depression treated with medication, third heart sound, age, diastolic BP, congestion score, HF duration, heart rate, SpO2, sodium, and 6-minute walk distance.


^BAdjusted for sleep apnea, depression treated with medication, Hispanic ethnicity, ICD or pacemaker, atrial fibrillation at baseline, Black race, history of ischemic heart disease, NYHA class, diastolic BP, creatinine, heart rate, potassium, and sodium.

BNP, B type natriuretic peptide; CI, confidence interval; CV, cardiovascular; HF, heart failure; HR, hazard ratio; NT-proBNP, N-terminal-pro-B type natriuretic peptide. Januzzi J, et al. *J Am Coll Cardiol*.2019;74:1205-17.

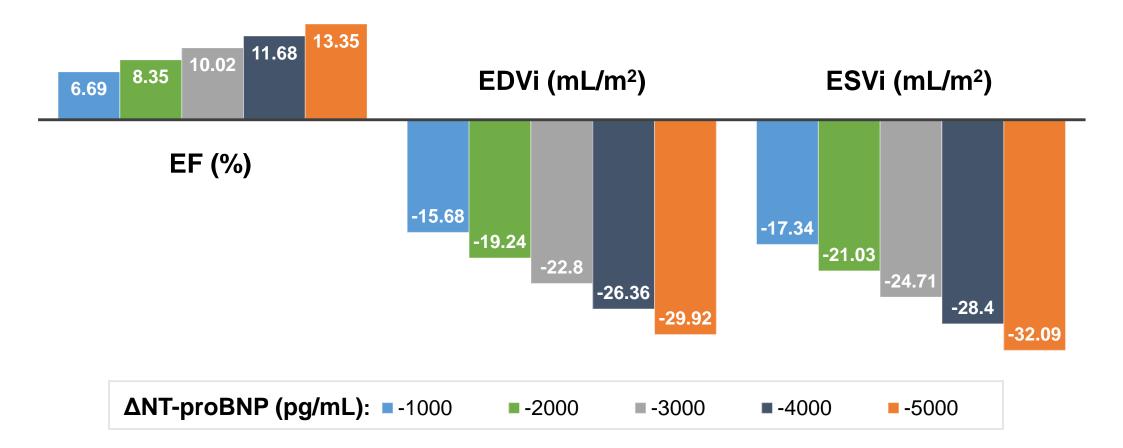
Time to first event after 90 days



All-cause mortality

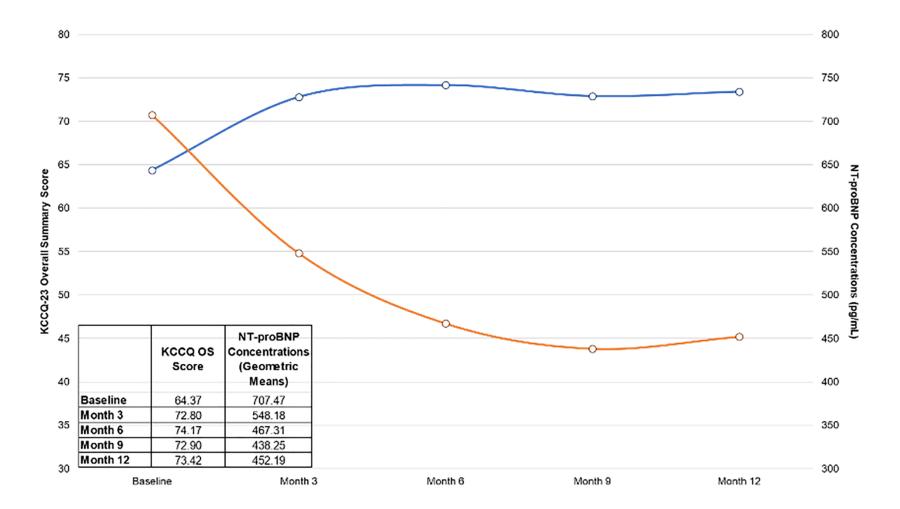
^AAdjusted for history of ischemic heart disease, depression treated with medication, third heart sound, age, diastolic BP, congestion score, HF duration, heart rate, SpO2, sodium, and 6-minute walk distance.

CV death/HF hospitalization

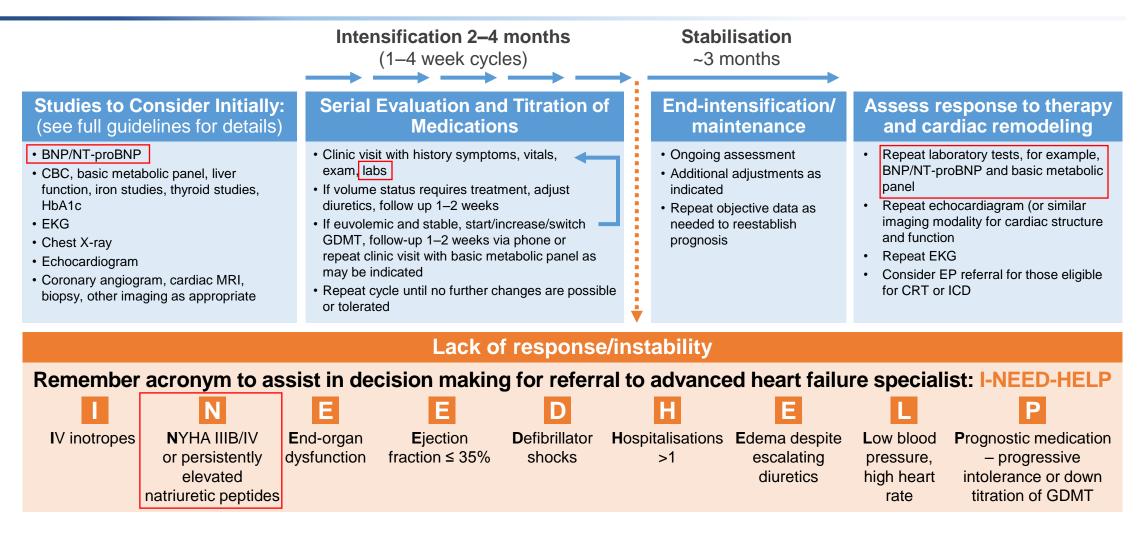


^BAdjusted for sleep apnea, depression treated with medication, Hispanic ethnicity, ICD or pacemaker, atrial fibrillation at baseline, Black race, history of ischemic heart disease, NYHA class, diastolic BP, creatinine, heart rate, potassium, and sodium.

Change in LV structure and function at 1 year by NT-proBNP reduction



EF, ejection fraction; EDVi, end-diastolic volume index; ESVi, end-systolic volume index; LV, left ventricular; NTproBNP, N-terminal-pro-B type natriuretic peptide. Daubert MA, et al. *JACC Heart Fail.* 2019;7:158–168.


Lower NT-proBNP is associated with better KCCQ scores

Pina, et al, AHA 2019

Importance of biomarker testing for HF monitoring

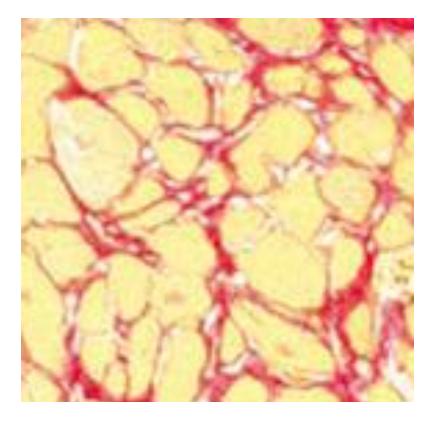
BNP, B type natriuretic peptide; HF, heart failure; NT-proBNP, N-terminal-pro-B type natriuretic peptide. Yancy CW, et al. *J Am Coll Cardiol*. 2018;71:201–230.

Operationalizing NT-proBNP monitoring to enhance clinical decision-making in chronic HF

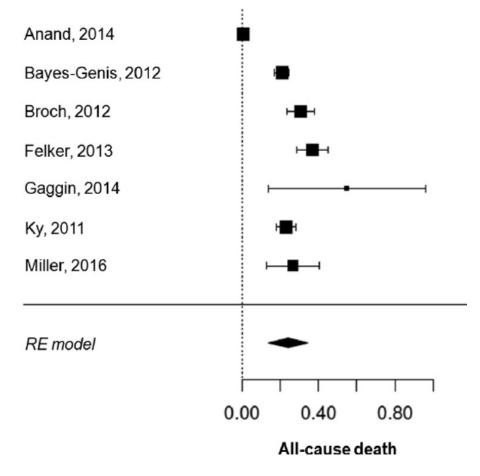
- In recently decompensated patients, measure 1–2 weeks after discharge (office or home).
- In stable ambulatory patients, measure every 3 months
 - Stable concentrations <1000 pg/mL: imaging and other testing may be deferred
 - Elevated/rising concentrations: repeat imaging, further evaluations, review medication/lifestyle program and adjust as appropriate
- Markedly elevated concentrations: Consider transplant referral, consider diagnoses associated with "unexpectedly elevated" NT-proBNP (amyloidosis).

Other risk biomarkers predictive of remodeling

• Soluble ST2: a biomarker of myocardial fibrosis and remodeling

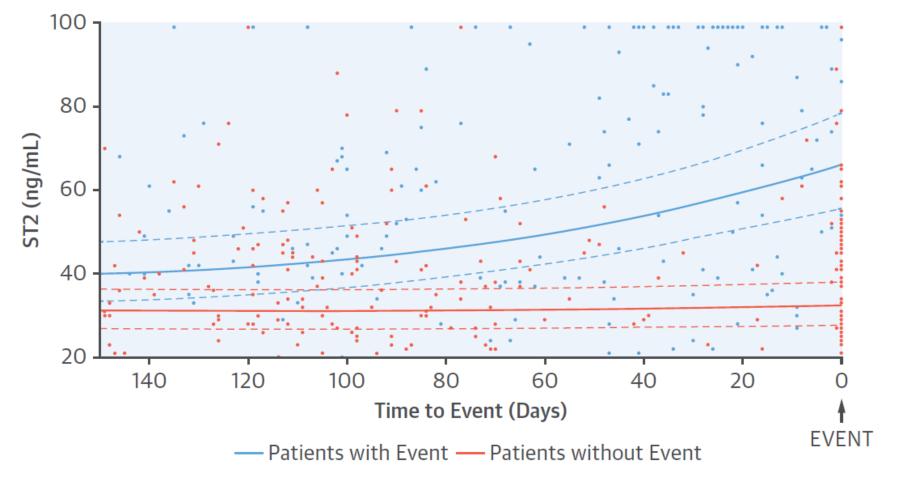

• High sensitivity cardiac troponin

• Collagen markers, mimecan, IGFBP7

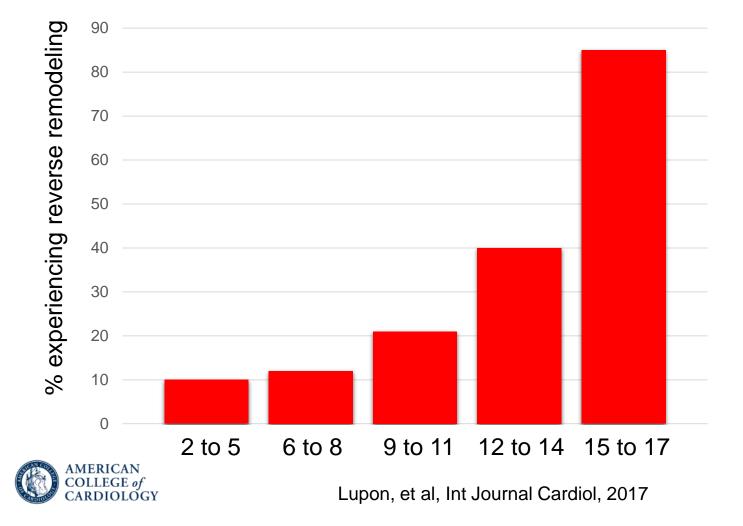


ST2 and risk: Meta analysis

Excessive fibrosis in dysregulated ST2 signaling

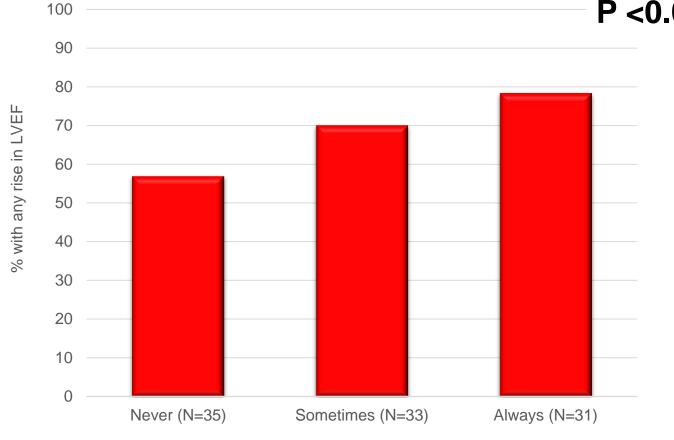


Aimo, et al, JACC Heart Failure 2017


Serial measurement of sST2

van Vark, L.C. et al. J Am Coll Cardiol. 2017;70(19):2378-88.

ST2 and cardiac remodeling



The ST2-R2 score consists of:

- sST2 < 48 ng/mL = 3 pts
- Non-ischemic etiology = 5 pts
- No LBBB = 4 pts
- HF < 1 year = 2 points
- LVEF <24% = 1 point
- Beta blocker therapy = 2 points

Elevated hs-cTnl predicts worse remodeling

P <0.001

Serial measurement of hsTnl over a year's time revealed patterns that predict change in LV function:

Sustained reduction in hsTnl <10.9 ng/L predict reverse remodeling

Is the hs-cTnl low?

Motiwala et al, J Cardiovas Transl Research, 2015

HF Clinical Practice Guidelines

Indication	Class	LOE
NPs for diagnosis ¹⁻³	- I	А
NPs for prognosis ¹⁻³	- I	А
NPs for predischarge risk assessment ¹⁻³	lla	B-NR
NPs to prevent HF onset ¹⁻³	lla	B-R
NPs to guide HF therapy ⁴	lla	В

LOE, level of evidence.

STOP-HF Trial to Investigate the Efficacy of a Screening Program Using BNP and Collaborative Care

Routine PCP Care

- Annual BNP not available to clinicians
- At least annual review by PCP
- Cardiology review only if requested by PCP

BNP-Directed Care

- In addition to routine care, annual BNP in all patients
- If BNP >50 pg/mL at any time
 - Shared care
 - Cardiology review
 - Echo-Doppler
 - Other CV investigations
 - CV nurse coaching
 - Cardiology follow-up

A parallel-group randomized trial involving 1374 participants with cardiovascular risk factors recruited from 39 primary care practices in Ireland between January 2005 and December 2009 and followed up until December 2011. PCP, primary care physician; STOP-HF, St. Vincent's Screening to Prevent Heart Failure. Ledwidge M et al. *JAMA*. 2013;310:66-74.

Prevalence of Asymptomatic LVSD Was Lower Following BNP-Directed Care

LV Dysfunction and HF at 8 Years

Neurohormonal Therapy for Primary Prevention of CV Events in Patients With Diabetes With Elevated NT-proBNP

The PONTIAC Trial investigated the preventive effect of neurohormonal therapy in high-risk patients with diabetes with elevated NT-proBNP

Endpoint HR 95% CI **P** value Hospitalization or death due to 0.351 0.127-0.975 .04 cardiac disease All-cause hospitalizations 0.657 0.465-0.927 .02 Unplanned CV hospitalization 0.376 0.157-0.899 .03 or death HF hospitalizations 0.140 0.017-1.137 .07

Cox Regression Models

Hospitalization or Death Due to Cardiac Disease 1.0 Treatment (n = 150) Controls (n = 150) P=.035

10

15

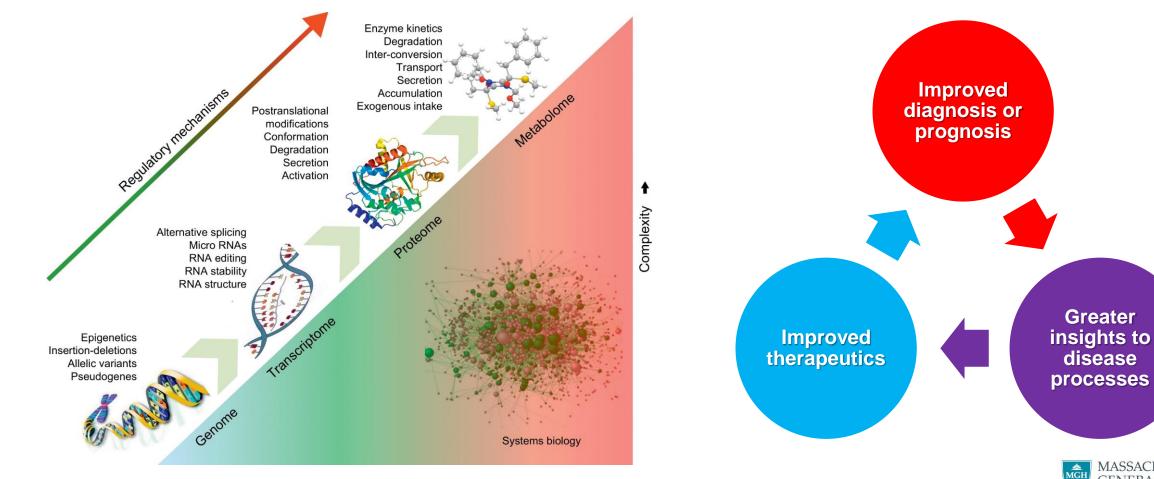
Months

5

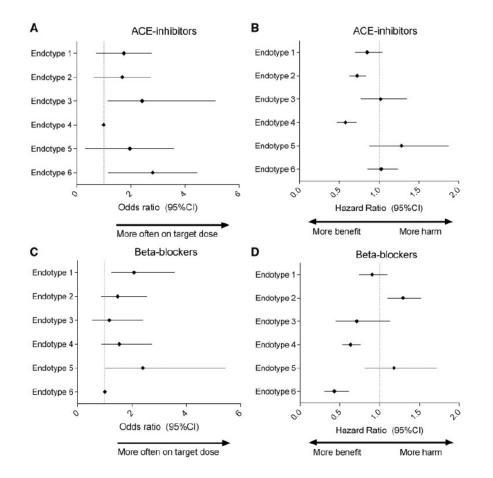
Patients (N = 300) with type 2 diabetes and elevated NT-proBNP (>125 pg/mL), but free of cardiac disease. Control group patients (n=150) were treated at 4 diabetes care units. Treatment group patients (n=150) were additionally treated at a cardiac outpatient clinic for the up-titration of RAAS antagonists and beta-blockers.

PONTIAC, NT-proBNP Selected PreventiOn of cardiac eveNts in a populaTion of dlabetic patients without A history of Cardiac disease. Huelsmann M et al. *J Am Coll Cardiol.* 2013;62:1365-1372. MASSACHUSETTS GENERAL HOSPITAL HEART CENTER

20


24

Biomarkers in HF: What is in the future?


OMICs and discovery in HF

MASSACHUSETTS GENERAL HOSPITAL HEART CENTER

Proteomics to define HF endotypes

Endotype 1		Endotype	2	Endotype 3	
Marker	C-index	Marker	C-index	Marker	C-index
IGFBP1	0.83	PAI	0.77	SELP	0.93
IGFBP2	0.70	PDGFsA	0.74	PECAM1	0.93
NT-proBNP	0.65	SELP	0.7	JAMA	0.97
Combined	0.83	Combined	0.78	Combined	0.97
Endotype 4		Endotype	5	Endotype 6	
Endotype 4 Marker	C-index		5 C-index	Endotype 6 Marker	C-index
					C-index 0.70
Marker	C-index	Marker	C-index	Marker	-
Marker ST2	C-index 0.81	Marker	C-index	Marker TPA	0.70

Tromp et al, EHJ, 2018;39:4269-4276

Conclusions

- Biomarkers play a clinical role for diagnosis, prognosis, management and possibly prevention of HF
- The natriuretic peptides play the largest role
- Other biomarkers with links to remodeling may add information for diagnosis and prognostication
- Omics will provide information regarding HF biology, allow for biomarker discovery, treatment targets and possibly individualize treatment

